Abstract

Gastric carcinoma (GC) is the fourth leading cause of cancer-related mortality worldwide. Patients with advanced GC tend to have poor prognoses and shortened survival. Finding novel predictive biomarkers for GC prognosis is an urgent need. Mitophagy is the selection degradation of damaged mitochondria to maintain cellular homeostasis, which has been shown to play both pro- and anti-tumor effects. This study combined single-cell sequencing data and transcriptomics to screen mitophagy-related genes (MRGs) associated with GC progression and analyze their clinical values. Reverse transcription-quantitative PCR (RT-qPCR) and immunochemistry (IHC) further verified gene expression profiles. A total of 18 DE-MRGs were identified after taking an intersection of single-cell sequencing data and MRGs. Cells with a higher MRG score were mainly distributed in the epithelial cell cluster. Cell-to-cell communications among epithelial cells with other cell types were significantly upregulated. We established and validated a reliable nomogram model based on DE-MRGs (GABARAPL2 and CDC37) and traditional clinicopathological parameters. GABARAPL2 and CDC37 displayed different immune infiltration states. Given the significant correlation between hub genes and immune checkpoints, targeting MRGs in GC may supplement more benefits to patients who received immunotherapy. In conclusion, GABARAPL2 and CDC37 may be prognostic biomarkers and candidate therapeutic targets of GC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.