Abstract
Metal cofactors within proteins perform a versatile set of essential cellular functions. In order to take advantage of the diverse functionality of metalloproteins, researchers have been working to design or modify metal binding sites in proteins to rationally tune the function or activity of the metal cofactor. This study has performed an analysis on the backbone atom geometries of metal-binding amino acids among 10 different metal binding sites within the entire protein data bank. A set of 13 geometric parameters (features) was identified that is capable of predicting the presence of a metal cofactor in the protein structure with overall accuracies of up to 97% given only the relative positions of their backbone atoms. The decision tree machine-learning algorithm used can quickly analyze an entire protein structure for the presence of sets of primary metal coordination spheres upon mutagenesis, independent of their original amino acid identities. The methodology was designed for application in the field of metalloprotein engineering. A cluster analysis using the data set was also performed and demonstrated that the features chosen are useful for identifying clusters of structurally similar metal-binding sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.