Abstract

Deepening the understanding of diurnal characteristics and driving mechanisms of surface urban heat islands (SUHIs) across different local climate zones (LCZs) and time scales is of great significance for guiding urban surface heat mitigation. However, a comprehensive investigation of SUHIs from the diurnal, local, multi-seasonal, and interactive perspectives remains a large gap. Here, we generalized major diurnal patterns of LCZ-based SUHI intensities (SUHIIs) throughout 2020 over the urban area of Beijing, China, based on diurnal temperature cycle modeling, block-level LCZ mapping, and hierarchical clustering. A geographical detector was then employed to explore the individual and interactive impacts of 10 morphological, socioeconomic, and meteorological factors on the multi-temporal spatial differentiations of SUHIIs. Results indicate six prevalent diurnal SUHII patterns with distinct features among built LCZ types. LCZs 4 and 5 (open high- and mid-rise buildings) predominantly display patterns one, two, and five, characterized by an afternoon increase and persistently higher values during the night. Conversely, LCZs 6, 8, and 9 (open, large, and sparsely built low-rise buildings) mainly exhibit patterns three, four, and six, with a decrease in SUHII during the afternoon and lower intensities at night. The maximum/minimum SUHIIs occur in the afternoon–evening/morning for patterns 1–3 but in the morning/afternoon for patterns 5–6. In all four seasons, the enhanced vegetation index (EVI) and gross domestic product (GDP) have the top two individual effects for daytime spatial differentiations of SUHIIs, while the air temperature (TEM) has the largest explanatory power for nighttime differentiations of SUHIIs. All factor interactions are categorized as two-factor or nonlinear enhancements, where nighttime interactions exhibit notably greater explanatory powers than daytime ones. The strongest interactions are EVI ∩ GDP (q = 0.80) during the day and TEM ∩ EVI (q = 0.86) at night. The findings of this study contribute to an improved interpretation of the diurnal continuous dynamics of local SUHIIs in response to various environmental conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call