Abstract
Predicting complications associated with complex disease is a challenging task given imbalanced and highly correlated disease complications along with unmeasured or latent factors. To analyse the complications associated with complex disease, this article attempts to deal with complex imbalanced clinical data, whilst determining the influence of latent variables within causal networks generated from the observation. This work proposes appropriate Intelligent Data Analysis methods for building Dynamic Bayesian networks with latent variables, applied to small-sized clinical data (a case of Type 2 Diabetes complications). First, it adopts a Time Series Bootstrapping approach to re-sample the rare complication class with a replacement with respect to the dynamics of disease progression. Then, a combination of the Induction Causation algorithm and Link Strength metric (which is called IC*LS approach) is applied on the bootstrapped data for incrementally identifying latent variables. The most highlighted contribution of this paper gained insight into the disease progression by interpreting the latent states (with respect to the associated distributions of complications). An exploration of inference methods along with confidence interval assessed the influences of these latent variables. The obtained results demonstrated an improvement in the prediction performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.