Abstract

We consider the estimation of latent grouped patterns in dynamic panel data models with interactive fixed effects. We assume that the individual slope coefficients are homogeneous within a group and heterogeneous across groups but each individual’s group membership is unknown to the researcher. We consider penalized principal component (PPC) estimation by extending the penalized-profile-likelihood-based C-Lasso of Su, Shi, and Phillips (2016) to panel data models with cross section dependence. Given the correct number of groups, we show that the C-Lasso can achieve simultaneous classification and estimation in a single step and exhibit the desirable property of uniform classification consistency. The C-Lasso-based PPC estimators of the group-specific parameters also have the oracle property. BIC-type information criteria are proposed to choose the numbers of factors and groups consistently and to select the data-driven tuning parameter. Simulations are conducted to demonstrate the finite-sample performance of the proposed method. We apply our C-Lasso to study the persistence of housing prices in China’s large and medium-sized cities in the last decade and identify three groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.