Abstract

Abstract The properties of joints in mechanical systems are notoriously uncertain causing corresponding uncertainty in the systems’ dynamic responses. A piping system is one such example where an accurate knowledge of joint properties is useful for the purposes of structure-borne sound transmission, fatigue considerations and structural health monitoring. This paper presents an inverse technique that is applicable to joint estimation in one-dimensional structures such as a pipe. Measured wave reflection coefficients are used which have several advantages over modal information. First, they characterise just the joint and adjacent pipes and are independent of the rest of the built-up system. Second, they are potentially more sensitive to the joint parameters in question than are modal parameters. The method is illustrated by means of an experimental case study featuring a straight pipe suspended by a cantilevered hanger. The stiffness and inertia of the hanger are accurately identified from measured data at frequencies significantly higher than the fundamental modes of the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call