Abstract

AbstractIsochronic continuous horizons between 20 and 90 m depth in a ground-penetrating radar (GPR) profile, recorded in Dronning Maud Land, Antarctica, are identified by comparison of synthetic and measured single radar traces. The measured radar-gram is derived from a stacked GPR profile; the synthetic radargram is computed by convolution of the complex reflection coefficient profile, based on dielectric profiling (DEP) data of a 150 m ice core, with a depth-invariant wavelet. It reproduces prominent reflections of the measured radargram to a considerable degree. Analyzing matching peaks in both radargrams enables us to identify isochronic reflections and transfer individual volcanic-event datings to the GPR profile. Reflections are primarily caused by changes in permittivity; changes in conductivity are of minor importance. However, several peaks in permittivity andconductivity show a good correlation and indicate that some reflections are related to acidic layers. The results demonstrate the possibility of reproducing radargrams from ice-core property profiles, a necessary step for the interpretation of remotely sensed radar data and the general significance of connecting ice-core and radar data for correct interpretations. Problems related to forward modeling, data gaps, origin of permittivity peaks, and GPR profiles used for comparison, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.