Abstract
Finding not typical financial operations is a complicated task. The difficulties arise not only due to the sophisticated actions of fraudsters but also because of the large number of financial operations performed by business companies. This is especially true for large companies. It is highly desirable to have a tool to reduce the number of potentially irregular operations significantly. This paper presents an implementation of NLP-based algorithms to identify irregular financial operations using comments left by accountants. The comments are freely written and usually very short remarks used by accountants for personal information. Implementation of content analysis using cosine similarity showed that identification of the type of operation using the comments of accountants is very likely. Further comment content analysis and financial data analysis showed that it could be expected to reduce the number of potentially suspicious operations significantly: analysis of more than half a million financial records of Dutch companies enabled the identification of 0.3% operations that may be potentially suspicious. This could make human financial auditing easier and more robust task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.