Abstract

Every epidemic affects the real lives of many people around the world and leads to terrible consequences. Recently, many tweets about the COVID-19 pandemic have been shared publicly on social media platforms. The analysis of these tweets is helpful for emergency response organizations to prioritize their tasks and make better decisions. However, most of these tweets are non-informative, which is a challenge for establishing an automated system to detect useful information in social media. Furthermore, existing methods ignore unlabeled data and topic background knowledge, which can provide additional semantic information. In this paper, we propose a novel Topic-Aware BERT (TABERT) model to solve the above challenges. TABERT first leverages a topic model to extract the latent topics of tweets. Secondly, a flexible framework is used to combine topic information with the output of BERT. Finally, we adopt adversarial training to achieve semi-supervised learning, and a large amount of unlabeled data can be used to improve inner representations of the model. Experimental results on the dataset of COVID-19 English tweets show that our model outperforms classic and state-of-the-art baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.