Abstract

Modeling complex data, e.g. time series as well as network-based data, is a prominent area of research. In this paper, we focus on a combination of both, analyzing network-based spatial sensor data which is attributed with high frequency time series information. We apply a symbolic representation and an attention-based local abstraction approach, to enhance interpretability on the respective complex high frequency time series data. For this, we aim at identifying informative measurements captured by the respective nodes of the sensor network. To do so, we demonstrate the efficacy of the Symbolic Fourier Approximation (SFA) and the attention-based symbolic abstraction method to localize relevant node sensor-information, by using a transformer architecture as an encoder for a graph neural network. In our experiments, we compare two seismological datasets to their previous state-of-the-art model, demonstrating the advantages and benefits of our presented approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.