Abstract

Identifying file similarity is very important for data management. Sampling files is a simple and effective approach to identify the file similarity. However, the traditional sampling algorithm(TSA) is very sensitive to file modification. For example, a single bit shift would result in a failure of similarity detection. Many research efforts have been invested in solving/alleviating this problem. This paper proposes a Position-Aware Sampling(PAS) algorithm to identify file similarity in large data sets by modulo file length. This method is very effective in dealing with file modification when performing similarity detection. Comprehensive experimental results demonstrate that PAS significantly outperforms a well-known similarity detection algorithm called simhash in terms of precision and recall. Furthermore, the time overhead, CPU and memory occupation of PAS are much less than that of simhash.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.