Abstract
Lauraceae and Fagaceae are two large woody plant families that are predominant in the low- and middle-altitude regions in Taiwan. The highly interspecific similarity between some species of the family brings limitations on the management and utilization. This work proposed an approach for identifying 15 Lauraceae species and 20 Fagaceae species using leaf images and convolutional neural networks (CNNs). Leaf specimens of 35 species were collected from the northern, central, and southern parts of Taiwan. Images of the leaves were acquired using flat-bed scanners. Three CNN architectures—DenseNet-121, MobileNet V2, and Xception—were trained. Xception achieved the highest mean test accuracy of 99.39%, and MobileNet V2 required the shortest mean test time of 17.1 ms per image using a GPU. The saliency maps revealed that the characteristics learned by models matched the leaf features used by botanists. A pruning algorithm, gate decorator, was applied to the trained models for reducing the number of parameters and number of floating-point operations of the MobileNet V2 by 55.4% and 69.1%, respectively, while the model accuracy was maintained at 92.03%. Thus, MobileNet V2 has the potential to be used for identifying the Lauraceae and Fagaceae species on mobile devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.