Abstract
Individual organisms are affected by various natural and anthropogenic environmental factors throughout their life history. This is reflected in the way population abundance fluctuates. Consequently, observed population dynamics are often produced by the superimposition of multiple environmental signals. This complicates the analysis of population time‐series. Here, a multivariate time‐series method called maximum autocorrelation factor analysis (MAFA) was used to extract underlying signals from multiple population time series data. The extracted signals were compared with environmental variables that were suspected to affect the populations. Finally, a simple multiple regression analysis was applied to the same data set, and the results from the regression analysis were compared with those from MAFA. The extracted signals with MAFA were strongly associated with the environmental variables, suggesting that they represent environmental factors. On the other hand, with the multiple regression analysis, one of the important signals was not identifiable, revealing the shortcoming of the conventional approach. MAFA summarizes data based on their lag‐one autocorrelation. This allows the identification of underlying signals with a small effect size on population abundance during the observation. It also uses multiple time series collected in parallel; this enables us to effectively analyze short time series. In this study, annual spawning adult counts of Chinook salmon at various locations within the Klamath Basin, California, were analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.