Abstract

An examination of electroencephalographic and magnetoencephalographic studies demonstrates how age-related changes in brain neural function temporally constrain their use as diagnostic markers. A first example shows that, given maturational changes in the resting-state peak alpha frequency in typically developing children but not in children who have autism spectrum disorder (ASD), group differences in alpha-band activity characterize only a subset of children who have ASD. A second example, auditory encoding processes in schizophrenia, shows that the complication of normal age-related brain changes on detecting and interpreting group differences in neural activity is not specific to children. MRI studies reporting group differences in the rate of brain maturation demonstrate that a group difference in brain maturation may be a concern for all diagnostic brain markers. Attention to brain maturation is needed whether one takes a DSM-5 or a Research Domain Criteria approach to research. For example, although there is interest in cross-diagnostic studies comparing brain measures in ASD and schizophrenia, such studies are difficult given that measures are obtained in one group well after and in the other much closer to the onset of symptoms. In addition, given differences in brain activity among infants, toddlers, children, adolescents, and younger and older adults, creating tasks and research designs that produce interpretable findings across the life span and yet allow for development is difficult at best. To conclude, brain imaging findings show an effect of brain maturation on diagnostic markers separate from (and potentially difficult to distinguish from) effects of disease processes. Available research with large samples already provides direction about the age range(s) when diagnostic markers are most robust and informative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call