Abstract

AbstractA quantum memory is a crucial keystone for enabling large‐scale quantum networks. Applicable to the practical implementation, specific properties, i.e., long storage time, selective efficient coupling with other systems, and a high memory efficiency are desirable. Though many quantum memory systems are developed thus far, none of them can perfectly meet all requirements. This work herein proposes a quantum memory based on color centers in hexagonal boron nitride (hBN), where its performance is evaluated based on a simple theoretical model of suitable defects in a cavity. Employing density functional theory calculations, 257 triplet and 211 singlet spin electronic transitions are investigated. Among these defects, it is found that some defects inherit the Λ electronic structures desirable for a Raman‐type quantum memory and optical transitions can couple with other quantum systems. Further, the required quality factor and bandwidth are examined for each defect to achieve a 95% writing efficiency. Both parameters are influenced by the radiative transition rate in the defect state. In addition, inheriting triplet‐singlet spin multiplicity indicates the possibility of being a quantum sensing, in particular, optically detected magnetic resonance. This work therefore demonstrates the potential usage of hBN defects as a quantum memory in future quantum networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call