Abstract

Realistic fluid flow problems often require that Lagrangian tracers are deployed in a sparse or very-sparse manner, such as for oceanic and atmospheric flows where large-scale motion needs characterisation. Data sparsity represents a significant issue in Lagrangian analysis, especially for data-driven methods that rely heavily on large datasets. We propose a multiscale spatial recurrence network (MSRN) methodology for characterising very-sparse Lagrangian data, which exploits individual tracks and a spatial recurrence criterion to identify the spatio-temporal complexity of tracer trajectories. The MSRN is an unsupervised modelling framework that does not require a priori parameter setting, and—through the quantification of persistent link activation at specific trajectory intervals—can reveal the presence of dominant looping scales in a variety of salient fluid flows. This new paradigm is shown to be successful for the study of Lagrangian tracers seeded in complex (realistic) flows, including unsteady and advection-dominated problems. This makes MSRNs an effective and versatile tool to characterise sensor trajectories in key problems such as environmental processes critical to understanding and mitigating climate change.Graphic abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call