Abstract

Pelvic organ prolapse (POP) is characterized by weakening of the connective tissues and loss of support for the pelvic organs. Collagen is the predominant, load-bearing protein within pelvic floor connective tissues. In this study, we examined the nanoscopic structures and biomechanics of native collagen fibrils in surgical, vaginal wall connective tissues from healthy women and POP patients. Compared to controls, collagen fibrils in POP samples were bulkier, more uneven in width and stiffer with aberrant D-period. Additionally, the ratio of collagen I (COLI) and collagen III (COLIII) is doubled in POP with a concomitant reduction of the amount of total collagen. Thus, POP is characterized by abnormal biochemical composition and biophysical characteristics of collagen fibrils that form a loose and fragile fiber network accountable for the weak load-bearing capability. The study identifies nanoscale alterations in collagen as diagnostic markers that could enable pre-symptomatic or early diagnosis of POP. From the Clinical EditorPelvic organ prolapse (POP) occurs due to abnormalities of the supporting connective tissues. The underlying alterations of collagen fibers in the connective tissues have not been studied extensively. In this article, the authors showed that collagen fibrils in POP patients were much different from normal controls. The findings may provide a framework for the diagnosis of other connective diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.