Abstract
In this paper we show that an autoregressive fractionally integrated moving average time-series model can identify two types of motion of membrane proteins on the surface of mammalian cells. Specifically we analyze the motion of the voltage-gated sodium channel Nav1.6 and beta-2 adrenergic receptors. We find that the autoregressive (AR) part models well the confined dynamics whereas the fractionally integrated moving average (FIMA) model describes the nonconfined periods of the trajectories. Since the Ornstein-Uhlenbeck process is a continuous counterpart of the AR model, we are also able to calculate its physical parameters and show their biological relevance. The fitted FIMA and AR parameters show marked differences in the dynamics of the two studied molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.