Abstract

In the hydrodynamics of integrable models, diffusion is a subleading correction to ballistic propagation. Here we quantify the diffusive contribution for one-dimensional Bose gases and find it most influential in the crossover between the main thermodynamic regimes of the gas. Analysing the experimentally measured dynamics of a single density mode, we find diffusion to be relevant only for high wavelength excitations. Instead, the observed relaxation is solely caused by a ballistically driven dephasing process, whose time scale is related to the phonon lifetime of the system and is thus useful to evaluate the applicability of the phonon bases typically used in quantum field simulators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.