Abstract

AbstractProper classification of nontectonic seismic signals is critical for detecting microearthquakes and developing an improved understanding of ongoing weak ground motions. We use unsupervised machine learning to label five classes of nonstationary seismic noise common in continuous waveforms. Temporal and spectral features describing the data are clustered to identify separable types of emergent and impulsive waveforms. The trained clustering model is used to classify every 1 s of continuous seismic records from a dense seismic array with 10–30 m station spacing. We show that dominate noise signals can be highly localized and vary on length scales of hundreds of meters. The methodology demonstrates the complexity of weak ground motions and improves the standard of analyzing seismic waveforms with a low signal‐to‐noise ratio. Application of this technique will improve the ability to detect genuine microseismic events in noisy environments where seismic sensors record earthquake‐like signals originating from nontectonic sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.