Abstract
Our objective was to determine how varied is the response of C cycling to temperature and irradiance in tundra vegetation. We used a large chamber to measure C exchange at 23 locations within a small arctic catchment in Alaska during summer 2003 and 2004. At each location, we determined light response curves of C exchange using shade cloths, twice during a growing season. We used data to fit a simple photosynthesis-irradiance, respiration-temperature model, with four parameters. We used a maximum likelihood technique to determine the acceptable parameter space for each light curve, given measurement uncertainty. We then explored which sites and time periods had parameter sets in common—an indication of functional similarity. We found that seven distinct parameter sets were required to explain observed C flux responses to temperature and light variation at all sites and time periods. The variation in estimated maximum photosynthetic rate (Pmax) was strongly correlated with measurements of site leaf area index (LAI). The behavior of tussock tundra sites, the dominant vegetation of arctic tundra, could largely be described with a single parameter set, with a Pmax of 9.7 μmol m−2 s−1. Tussock tundra sites had, correspondingly, similar LAI (mean = 0.66). Non-tussock sites (for example, sedge and shrub tundras) had larger spatial and temporal variations in both C dynamic parameters (Pmax varying from 9.7–25.7 μmol m−2 s−1) and LAI (0.6–2.0). There were no clear relationships between dominant non-tussock vegetation types and a particular parameter set. Our results suggest that C dynamics of the acidic tussock tundra slopes and hilltops in northern Alaska are relatively simply described during the peak growing season. However, the foot-slopes and water tracks have more variable patterns of LAI and C exchange, not simply related to the dominant vegetation type.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.