Abstract

<p>Coronal mass ejections (CMEs) typically cause the strongest geomagnetic storms so a major focus of space weather research has been predicting the arrival time of CMEs. Most arrival time models fall into two categories: (1) drag-based models that integrate the drag force between a simplified CME structure and the background solar wind and (2) full magnetohydrodynamic (MHD) models. Drag-based models typically are much more computationally efficient than MHD models, allowing for ensemble modeling. While arrival time predictions have improved since the earliest attempts,both types of models currently have difficulty achieving mean absolute errors below 10 hours. Here we use a drag-based model ANTEATR to explore the sensitivity of arrival times to various input parameters. We consider CMEs of different strengths from average to extreme size, speed, and mass (kinetic energies between 9x10^29 and 6x10^32 erg). For each scale CME we vary the input parameters to reflect the current observational uncertainty in each and determine how accurately each must be known to achieve predictions that are accurate within 5 hours. We find that different scale CMEs are the most sensitive to different parameters. The transit time of average strength CMEs depends most strongly on the CME speed whereas an extreme strength CME is the most sensitive to the angular width. A precise CME direction is critical for impacts near the flanks, but not near the CME nose. We also show that the Drag Based Model has similar sensitivities, suggesting that these results are representative for all drag-based models.</p><p> </p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.