Abstract
Analyzing the crash reports recorded upon software crashes is a critical activity for software quality assurance. Predicting whether or not the fault causing the crash (crashing fault for short) resides in the stack traces of crash reports can speed-up the program debugging process and determine the priority of the debugging efforts. Previous work mostly collected label information from bug-fixing logs, and extracted crash features from stack traces and source code to train classification models for the Identification of Crashing Fault Residence (ICFR) of newly-submitted crashes. However, labeled data are not always fully available in real applications. Hence the classifier training is not always feasible. In this work, we make the first attempt to develop a cross project ICFR model to address the data scarcity problem. This is achieved by transferring the knowledge from external projects to the current project via utilizing a state-of-the-art Balanced Distribution Adaptation (BDA) based transfer learning method. BDA not only combines both marginal distribution and conditional distribution across projects but also assigns adaptive weights to the two distributions for better adjusting specific cross project pair. The experiments on 7 software projects show that BDA is superior to 9 baseline methods in terms of 6 indicators overall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.