Abstract

IntroductionIdentifying optimal COVID-19 vaccine dose is essential for maximizing their impact. However, COVID-19 vaccine dose-finding has been an empirical process, limited by short development timeframes, and therefore potentially not thoroughly investigated. Mathematical IS/ID modelling is a novel method for predicting optimal vaccine dose which could inform future COVID-19 vaccine dose decision making. MethodsPublished clinical data on COVID-19 vaccine dose–response was identified and extracted. Mathematical models were calibrated to the dose–response data stratified by subpopulation, where possible to predict optimal dose. Predicted optimal doses were summarised across vaccine type and compared to chosen dose for the primary series of COVID-19 vaccines to identify vaccine doses that may benefit from re-evaluation. Results30 clinical dose–response datasets in adults and elderly population were extracted for four vaccine types and optimal doses predicted using the models. Results suggest that, if re-assessed for dose, COVID-19 vaccines Ad26.cov, ChadOx1 n-Cov19, BNT162b2, Coronavac, and NVX-CoV2373 could benefit from increased dose in adults and mRNA-1273 and Coronavac, could benefit from increased and decreased dose for the elderly population, respectively. DiscussionFuture iterations of COVID-19 vaccines could benefit from re-evaluating dose to ensure most effective use of the vaccine and mathematical modelling can support this.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.