Abstract

BackgroundProtein complexes conserved across species indicate processes that are core to cellular machinery (e.g. cell-cycle or DNA damage-repair complexes conserved across human and yeast). While numerous computational methods have been devised to identify complexes from the protein interaction (PPI) networks of individual species, these are severely limited by noise and errors (false positives) in currently available datasets. Our analysis using human and yeast PPI networks revealed that these methods missed several important complexes including those conserved between the two species (e.g. the MLH1-MSH2-PMS2-PCNA mismatch-repair complex). Here, we note that much of the functionalities of yeast complexes have been conserved in human complexes not only through sequence conservation of proteins but also of critical functional domains. Therefore, integrating information of domain conservation might throw further light on conservation patterns between yeast and human complexes.ResultsWe identify conserved complexes by constructing an interolog network (IN) leveraging on the functional conservation of proteins between species through domain conservation (from Ensembl) in addition to sequence similarity. We employ 'state-of-the-art' methods to cluster the interolog network, and map these clusters back to the original PPI networks to identify complexes conserved between the species. Evaluation of our IN-based approach (called COCIN) on human and yeast interaction data identifies several additional complexes (76% recall) compared to direct complex detection from the original PINs (54% recall). Our analysis revealed that the IN-construction removes several non-conserved interactions many of which are false positives, thereby improving complex prediction. In fact removing non-conserved interactions from the original PINs also resulted in higher number of conserved complexes, thereby validating our IN-based approach. These complexes included the mismatch repair complex, MLH1-MSH2-PMS2-PCNA, and other important ones namely, RNA polymerase-II, EIF3 and MCM complexes, all of which constitute core cellular processes known to be conserved across the two species.ConclusionsOur method based on integrating domain conservation and sequence similarity to construct interolog networks helps to identify considerably more conserved complexes between the PPI networks from two species compared to direct complex prediction from the PPI networks. We observe from our experiments that protein complexes are not conserved from yeast to human in a straightforward way, that is, it is not the case that a yeast complex is a (proper) sub-set of a human complex with a few additional proteins present in the human complex. Instead complexes have evolved multifold with considerable re-organization of proteins and re-distribution of their functions across complexes. This finding can have significant implications on attempts to extrapolate other kinds of relationships such as synthetic lethality from yeast to human, for example in the identification of novel cancer targets. Availability: http://www.comp.nus.edu.sg/~leonghw/COCIN/.

Highlights

  • Protein complexes conserved across species indicate processes that are core to cellular machinery

  • Several complexes involved in core cellular processes such as cell cycle and DNA damage response (DDR) are not present in a recent (2012) compendium of human protein complexes assembled solely by computational identification of complexes from high-throughput protein complexes from protein interaction (PPI)[5]; a web-search in this compendium for BRCA1 does not yield any complexes even though BRCA1 is known to participate in three fundamental complexes in DDR viz. BRCA1-A, BRCA1-B and BRCA1-C complexes [6,7,8]

  • We believe that this picture reflects the actual situation, and it overrides the belief that a yeast complex is essentially a subset of a human complex with only a few new proteins added to the human complex

Read more

Summary

Introduction

Protein complexes conserved across species indicate processes that are core to cellular machinery (e.g. cell-cycle or DNA damage-repair complexes conserved across human and yeast). While numerous computational methods have been devised to identify complexes from the protein interaction (PPI) networks of individual species, these are severely limited by noise and errors (false positives) in currently available datasets. In spite of the significant progress in computational identification of protein complexes from protein interaction (PPI) networks over the last few years (see the surveys [1,2]), computational methods are severely limited by noise (false positives) and lack of sufficient interactions (e.g. membrane-protein interactions) in currently available PPI datasets, from human, to be able to completely reconstruct the complexosome [1,2]. It is useful to devise effective computational methods that look for evidence from evolutionary conservation to complement PPI data to reconstruct the full set of complexes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.