Abstract
Collector channels are openings located in the trabecular meshwork (TM) of the human eye that function as conduits, connecting the anterior chamber to the episcleral veins. Identifying the positions of collector channel orifices (CCOs) is essential for positioning implants in microinvasive canal-based glaucoma surgery, which is still not possible in vivo currently. Considerable evidence indicates that aqueous outflow becomes more active near the CCOs. Because the TM movement regulates the aqueous outflow, identification of the TM motion signal has the potential to locate the CCOs. Phase-sensitive optical coherence tomography (PhS-OCT) is an effective tool for the instantaneous detection of TM motion in vivo with sensitivity at the nanometer scale. However, the downside of this method is that phase measurement is prone to mix noises that negatively distinguish between biomedical signals. The TM motion was considered initially to be set up by the cardiac pulse. In this paper, a signal quality index related to blood pressure monitoring was applied to assess the validity of the TM motion signal. Measurements were carried out on two pairs of healthy human eyes. Quantitative measurements of the TM motion signal region such as size and frequency were recorded as the judgment indicator for CCOs. These results demonstrate that the PhS-OCT is a valuable tool capable of revealing the aqueous outflow pathway in vivo, offering a novel alternative to optimize glaucoma surgery.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.