Abstract

BackgroundDrug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs.ResultsWe use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH)-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes.ConclusionsWith gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

Highlights

  • Drug resistance has posed more severe and emergent threats to human health and infectious disease treatment

  • INH is known to be an inhibitor of mycolic acid biosynthesis (MAP) and ETA is a structural analog of INH that is thought to inhibit the same biosynthesis

  • We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systems-level analysis of bacterial resistance networks

Read more

Summary

Introduction

Drug resistance has posed more severe and emergent threats to human health and infectious disease treatment. Wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Drug resistance has been posing an emergent threat to human health and infectious disease treatment. Mycobacterium tuberculosis (Mtb) remained to be one of the leading and widely spread killer infectious diseases. In 2008, estimated 390000-510000 cases of multidrug resistant Mtb recorded in WHO 2010 and this problem is worsened significantly by the emergence of drug resistance under clinical drug used. Methods employed to tackle the problem of drug resistance are rather arbitrary. Several wet-lab experiments and clinical decisions like rotation of antibiotic combinations, identification of

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.