Abstract
Non-coding RNAs appear to be involved in the regulation of the nervous system. However, no competing endogenous RNA (ceRNA) network related to PM2.5 damage in the hippocampal function has yet been constructed. Herein, we used whole-transcriptome sequencing technology to systematically study the ceRNA network in rat hippocampi after PM2.5 exposure. We identified 100 circRNAs, 67 lncRNAs, 28 miRNAs, and 539 mRNAs and constructed the most comprehensive ceRNA network to date, to our knowledge. Gene Ontology and KEGG analyses showed that the network molecules are involved in synapses, neural projections, and neural development and involve signal pathways such as the synaptic vesicle cycle. Finally, the expression of the differentially expressed RNAs confirmed by quantitative real-time PCR was consistent with the sequencing data. This study systematically dissected the ceRNA atlas related to cognitive memory function in the hippocampal tissue of PM2.5-exposed rats for the first time, to our knowledge, and promotes the development of potential new treatments for cognitive impairment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.