Abstract
Background The diagnosis of chronic rhinosinusitis (CRS) is a complicated procedure. An electronic nose (eNose) is a novel method that detects disease from gas-phase mixtures, such as human breath. Aims/Objectives To determine whether an eNose based on differential mobility spectrometry (DMS) can detect chronic rhinosinusitis without nasal polyps (CRSsNP) by analyzing aspirated nasal air. Materials and methods Adult patients with CRSsNP were examined. The control group consisted of patients with septal deviation. Nasal air was aspirated into a collection bag and analyzed with DMS. The DMS data were classified using regularized linear discriminant analysis (LDA) models with 10-fold cross-validation. Results The accuracy of the DMS to distinguish CRSsNP from patients with septal deviation was 69%. Sensitivity and specificity were 67 and 70%, respectively. Bonferroni-corrected statistical differences were clearly noted. When a subgroup with more severe inflammatory disease was compared to controls, the classification accuracy increased to 82%. Conclusions The results of this feasibility study demonstrate that CRSsNP can potentially be differentiated distinguished from patients with similar nasal symptoms by analyzing the aspirated nasal air using DMS. Further research is warranted to evaluate the ability of this novel method in the differential diagnostics of CRS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.