Abstract

Noroviruses (NoVs), the major cause of epidemic acute gastroenteritis, recognize human histo-blood group antigens (HBGAs), which are present as free oligosaccharides in bodily fluid or glycolipids and glycoproteins on the surfaces of cells. The subviral P particle formed by the protruding (P) domain of the NoV capsid protein serves as a useful model for the study NoV-HBGA interactions. Here, we demonstrate the application of a catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against the P particle to rapidly identify NoV ligands and potential inhibitors. Carbohydrate libraries of 50 and 146 compounds, which included 18 and 24 analogs of HBGA receptors, respectively, were screened against the P particle of VA387, a member of the predominant GII.4 NoVs. Deprotonated ions corresponding to the P particle bound to carbohydrates were isolated and subjected to collision-induced dissociation to release the ligands in their deprotonated forms. The released ligands were identified by ion mobility separation followed by mass analysis. All 13 and 16 HBGA ligands with intrinsic affinities >500 M(-1) were identified in the 50 and the 146 compound libraries, respectively. Furthermore, screening revealed interactions with a series of oligosaccharides with structures found in the cell wall of mycobacteria and human milk. The affinities of these newly discovered ligands are comparable to those of the HBGA receptors, as estimated from the relative abundance of released ligand ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.