Abstract

Inhibition of the nonsense-mediated decay (NMD) mechanism in cells results in stabilization of transcripts carrying premature translation termination codons. A strategy referred to as gene identification by NMD inhibition (GINI) has been proposed to identify genes carrying nonsense mutations. Genes containing frameshift mutations in colon cancer cell line have been identified using a modified version of GINI. To increase the efficiency of identifying mutant genes using GINI, we have now further improved the strategy. In this approach, inhibition of NMD with emetine is complemented with inhibiting NMD by blocking the phosphorylation of the hUpf1 protein with caffeine. In addition, to enhance the GINI strategy, comparing mRNA level alterations produced by inhibiting transcription alone or inhibiting transcription together with NMD following caffeine pretreatment were used for the efficient identification of false positives produced as a result of stress response to NMD inhibition. To demonstrate the improved efficiency of this approach, we analysed colon cancer cell lines showing microsatellite instability. Bi-allelic inactivating mutations were found in the FXR1, SEC31L1, NCOR1, BAT3, PHF14, ZNF294, C19ORF5 genes as well as genes coding for proteins with yet unknown functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.