Abstract

The fruits of Nandina domestica Thunb. have served as folk medicines in Chinese and Japanese tradition for treatment of several tumors including pharynx tumor and tooth abscess for many years, yet its exact mechanism of action is not yet known. The study targets the identification of the main constituents of the fruits extracts and investigation of their mode of action in cancer therapy via pharmacology-based analysis and molecular docking. The different extracts of N. domestica Thunb. were analyzed via UPLC-MS/MS for identification of their active constituents. STITCH, DAVID, KEGG and STRING database were utilized for construction of compound-target and compound-target-pathway networks using Cytoscape 3.2.1. Molecular docking analysis of the top hit compounds was performed against the identified top hit molecular targets in the constructed networks. In vitro-testing of Nandina domestica Thunb. against colorectal cancer cell lines was carried out and correlated to the chemical profile of the extract to identify important biomarkers. The ADME properties of the active compounds were also evaluated. 22 compounds were identified by UPLC-MS/MS analysis and were forwarded to network pharmacology-based analysis. Results showed the enrichment of 5 compounds and 4 molecular targets in the network namely; AKT1, CASP3, MAPK1 and TP53. The pathway analysis of the identified targets revealed that 15 cancer-related pathways were enriched including colorectal cancer, endometrial cancer and small-cell lung cancer. In-vitro testing of the extracts against colo-rectal cancer cell lines revealed the fractions enriched in the identified hit compounds were indeed the most active as revealed from the HCA-heat-map. ADME results showed that all compounds were drug-like candidates showing acceptable values according to Lipinski's rule. Network pharmacology analysis revealed that the compounds isoquercitrin, quercitrin, berberine, chlorogenic acid and caffeic acid showed strong synergistic interactions with the cancer-related targets and pathways. It could be concluded that N. domestica Thunb. constituents affect both apoptosis and Akt-signaling pathways during the stages of early and intermediate adenoma through interaction with the targets CASP3 and MAPK1 (ErC2) while during the stages of late adenoma and carcinoma, the compounds acts through the p53 and ErbB signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call