Abstract

Genetic screens are widely used to identify genes that control specific biological functions. In Caenorhabditis elegans, forward genetic screens rely on the isolation of reproductively active mutants that can self-propagate clonal populations. Screens that target post-reproductive phenotypes, such as lifespan, are thus challenging. We combine microfluidic technologies and image processing to perform high-throughput automated screening for short-lived mutants using protein aggregation as a marker for aging. We take advantage of microfluidics for maintaining a reproductively active adult mutagenized population and for performing serial high-throughput analysis and sorting of animals with increased protein aggregation, using fluorescently-labeled PAB-1 as a readout. We demonstrate that lifespan mutants can be identified by screening for accelerated protein aggregation through quantitative analysis of fluorescently labeled aggregates while avoiding conditional sterilization or manual separation of parental and progeny populations. We also show that aged wildtypes and premature aggregation mutants differ in aggregate morphology, suggesting aggregate growth is time-dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.