Abstract

BackgroundAlthough the influence of molecular biomarkers on the biological behavior of tumor cells has been investigated, their quantitative influence on the velocity of tumor growth remains unclear. This study aimed to identify the molecular biomarkers associated with tumor growth rates in World Health Organization (WHO) grade II gliomas, or low-grade gliomas (LGGs).MethodsPreoperative magnetic resonance imaging (MRI) data of patients with LGGs were retrospectively reviewed. Patients with at least 2 preoperative MRIs taken more than 90 days apart were enrolled. Patients with isocitrate dehydrogenase (IDH) wild-type tumors or with no recorded IDH status were excluded. A linear mixed-effects model was used to assess the velocity of tumor diameter expansion. The effect of biomarker expression on tumor growth rate was assessed using a multivariate linear mixed-effects regression model.ResultsData from 56 patients were used in our study. The overall velocity of diameter expansion (VDE) for LGGs was 2.1 mm/year. Higher expression level of mutant p53 were significantly associated with a higher tumor growth rate (+1.9 mm/year, P<0.01), while higher expression level of alpha-thalassemia/mental retardation syndrome X-linked protein (ATRX) were significantly associated with a lower tumor growth rate (−1.3 mm/year, P<0.01). Tumors with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation were found to grow significantly more slowly than those with no methylation (−3.1 mm/year, P<0.01). The telomerase reverse transcriptase (TERT) promoter type and expressions levels of Ki-67 and epidermal growth factor receptor (EGFR) showed no significant independent impact on tumor growth rates.ConclusionsThe status of biomarkers is significantly associated with the tumor growth rate in LGGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call