Abstract

Traditional research on biodegradation of emerging organic pollutants involves slow and labor-intensive experimentation. Currently, fast-developing metagenome, metatranscriptome, and metabolome technologies promise to expedite mechanistic research on biodegradation of emerging organic pollutants. Integrating the metagenome, metatranscriptome, and metabolome (i.e., tri-omics) makes it possible to link gene abundance and expression with the biotransformation of the contaminant and the formation of metabolites from this biotransformation. In this study, we used this tri-omics approach to study the biotransformation pathways for cetyltrimethylammonium bromide (CTAB) under aerobic conditions. The tri-omics analysis showed that CTAB undergoes three parallel first-step mono-/di-oxygenations (to the α, β, and ω-carbons); intermediate metabolites and expressed enzymes were identified for all three pathways, and the β-carbon mono-/di-oxygenation is a novel pathway; and the genes related to CTAB biodegradation were associated with Pseudomonas spp. Four metabolites – palmitic acid, trimethylamine N-oxide (TMAO), myristic acid, and betaine – were the key identified biodegradation intermediates of CTAB, and they were associated with first-step mono-/di-oxygenations at the α/β-C. This tri-omics approach with CTAB demonstrates its power for identifying promising paths for future research on the biodegradation of complex organics by microbial communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call