Abstract

ObjectivesTo adapt and refine a previously-developed youth-specific algorithm to identify bedrest for use in adults. The algorithm is based on using an automated decision tree (DT) analysis of accelerometry data.DesignHealthy adults (n = 141, 85 females, 19–69 years-old) wore accelerometers on the waist, with a subset also wearing accelerometers on the dominant wrist (n = 45). Participants spent ≈24-h in a whole-room indirect calorimeter equipped with a force-platform floor to detect movement.MethodsMinute-by-minute data from recordings of waist-worn or wrist-worn accelerometers were used to identify bedrest and wake periods. Participants were randomly allocated to development (n = 69 and 23) and validation (n = 72 and 22) groups for waist-worn and wrist-worn accelerometers, respectively. The optimized DT algorithm parameters were block length, threshold, bedrest-start trigger, and bedrest-end trigger. Differences between DT classification and synchronized objective classification by the room calorimeter to bedrest or wake were assessed for sensitivity, specificity, and accuracy using a Receiver Operating Characteristic (ROC) procedure applied to 1-min epochs (n = 92,543 waist; n = 30,653 wrist).ResultsThe optimal algorithm parameter values for block length were 60 and 45 min, thresholds 12.5 and 400 counts/min, bedrest-start trigger 120 and 400 counts/min, and bedrest-end trigger 1,200 and 1,500 counts/min, for the waist and wrist-worn accelerometers, respectively. Bedrest was identified correctly in the validation group with sensitivities of 0.819 and 0.912, specificities of 0.966 and 0.923, and accuracies of 0.755 and 0.859 by the waist and wrist-worn accelerometer, respectively. The DT algorithm identified bedrest/sleep with greater accuracy than a commonly used automated algorithm (Cole-Kripke) for wrist-worn accelerometers (p<0.001).ConclusionsThe adapted DT accurately identifies bedrest in data from accelerometers worn by adults on either the wrist or waist. The automated bedrest/sleep detection DT algorithm for both youth and adults is openly accessible as a package “PhysActBedRest” for the R-computer language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.