Abstract
South-East Australia has recently been subjected to two of the worst droughts in the historical record (Millennium Drought, 2000-2009 and Big Dry, 2017-2019). Unfortunately, a lack of forest monitoring has made it difficult to determine whether widespread tree mortality has resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to more significant tree mortality than the Millennium drought. Critically, to be able to robustly project future expected climate change effects on Australian vegetation, we need to assess the vulnerability of Australian trees to drought. Here we implemented a model of plant hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. We parameterized the drought response behaviour of five broad vegetation types, based on a common garden dry-down experiment with species originating across a rainfall gradient (188-1,125mm/year) across South-East Australia. The new hydraulics model significantly improved (~35%-45% reduction in root mean square error) CABLE's previous predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in Australia. Landscape-scale predictions of the greatest percentage loss of hydraulic conductivity (PLC) of about 40%-60%, were broadly consistent with satellite estimates of regions of the greatest change in both droughts. In neither drought did CABLE predict that trees would have reached critical PLC in widespread areas (i.e.it projected a low mortality risk), although the model highlighted critical levels near the desert regions of South-East Australia where few trees live. Overall, our experimentally constrained model results imply significant resilience to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. Our approach presents a promising avenue to integrate experimental data and make regional-scale predictions of potential drought-induced hydraulic failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.