Abstract

Structural models of membrane proteins can be refined with sets of multiple orientation constraints derived from structural NMR studies of specifically labeled amino acids. The magic angle oriented sample spinning (MAOSS) NMR approach was used to determine a set of orientational constraints in bacteriorhodopsin (bR) in the purple membrane (PM). This method combines the benefits of magic angle spinning (MAS), i.e., improved sensitivity and resolution, with the ability to measure the orientation of anisotropic interactions, which provide important structural information. The nine methionine residues in bacteriorhodopsin were isotopically 15N labeled and spectra simplified by deuterium exchange before cross-polarization magic angle spinning (CPMAS) experiments. The orientation of the principal axes of the 15N chemical shift anisotropy (CSA) tensors was determined with respect to the membrane normal for five of six residual resonances by analysis of relative spinning sideband intensities. The applicability of this approach to large proteins embedded in a membrane environment is discussed in light of these results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call