Abstract

AbstractDefects are generally regarded to have negative impacts on carrier recombination, charge transport, and ion migration in materials, which thus lower the efficiency, speed, and stability of optoelectronic devices. Meanwhile, lots of efforts which focused on minimizing defects have greatly improved the performances of devices. Then, can defects be positive in optoelectronic devices? Herein, relying on in‐depth understanding of defect‐associated effects in semiconductors, trapping of photo‐generated carriers by defects is applied to enlarge photoconductive gain in photodetection. Therefore, the record photoconductive gain, gain‐bandwidth product, and detection limit are achieved in this photodetector. Exceeding the general concept that defects are harmful, a new view that the defects can be positive in photodetection is identified, which may guide to design high‐performance photodetectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.