Abstract

BackgroundBalancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level.Methodology/Principal FindingsWe integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m2), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover.Conclusions/SignificanceRisk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments.

Highlights

  • A promising approach to animal conservation in humanmodified landscapes involves quantifying resource-related behavior that structures occurrence, linking occurrence with a demographic outcome such as reproductive success, and depicting spatially the coincidence of occurrence and successful demographic performance at the landscape level [1]

  • Making the link between resources and fitness is necessary for guidance of on-the-ground conservation action because it distinguishes higher-risk habitat where animals are likely to occur, yet have poor demographic performance, from lower-risk habitat in which occurrence coincides with successful demographic performance

  • Spatial modeling for animal conservation typically does not include predictions of demographic performance; rather, patterns of occurrence are relied upon for guidance of conservation action

Read more

Summary

Introduction

A promising approach to animal conservation in humanmodified landscapes involves quantifying resource-related behavior that structures occurrence, linking occurrence with a demographic outcome such as reproductive success, and depicting spatially the coincidence of occurrence and successful demographic performance at the landscape level [1]. Making the link between resources and fitness is necessary for guidance of on-the-ground conservation action because it distinguishes higher-risk habitat where animals are likely to occur, yet have poor demographic performance, from lower-risk habitat in which occurrence coincides with successful demographic performance. This approach has strong application in conservation planning where wildlife-human interaction is a concern because it offers a spatially explicit framework from which to identify critical habitat [2], and the analysis underpinning spatial predictions provides information on mechanisms driving observed spatial or demographic patterns. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call