Abstract
Between-person heterogeneity of posttraumatic stress disorder (PTSD) is well established. Within-person analyses and the DSM-5 suggest that heterogeneity may also be evident within individuals across time as they move through social contexts and biological cycles. Modeling within-person symptom-level fluctuations may confirm such heterogeneity, elucidate mechanisms of disorder maintenance, and inform time- and person-specific interventions. The present study aimed to identify and predict discrete within-person disorder presentations, or symptom states, and explore group-level patterns of these states. Adults (N = 20, 60.0% male, M age = 38.25 years) with PTSD responded to symptom surveys four times per day for 30 days. We subjected each individual's dataset to Gaussian finite mixture modeling (GFMM) to uncover latent, within-person classes of symptom levels (i.e., states) and predicted those states with idiographic elastic net regularized regression using a set of time-based and behavioral predictors. Next, we conducted a GFMM of the within-person GFMM outputs and tested idiographic prediction models of these states. Multiple within-person states were revealed for 19 of 20 participants (Mdn = 4; 66 for the full sample). Prediction models were moderately successful, M AUC = .66 (d = 0.58), range: .50-1.00. The GFMM of the within-person model outputs revealed two states: one with above-average and one with below-average symptom levels. Prediction models were, again, moderately successful, M AUC = .66; range: .50-.89. The findings provide evidence for within-person heterogeneity of PTSD as well as between-person similarities and suggest that future work should incorporate additional contextual variables as symptom state predictors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.