Abstract
The COVID-19 pandemic has profoundly reshaped human life. The development of COVID-19 vaccines has offered a semblance of normalcy. However, obstacles to vaccination have led to substantial loss of life and economic burdens. In this study, we analyze data from a prominent health insurance provider in the United States to uncover the underlying reasons behind the inability, refusal, or hesitancy to receive vaccinations. Our research proposes a methodology for pinpointing affected population groups and suggests strategies to mitigate vaccination barriers and hesitations. Furthermore, we estimate potential cost savings resulting from the implementation of these strategies. To achieve our objectives, we employed Bayesian data mining methods to streamline data dimensions and identify significant variables (features) influencing vaccination decisions. Comparative analysis reveals that the Bayesian method outperforms cutting-edge alternatives, demonstrating superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.