Abstract

Quinacridone and its substituted analogs are pigments widely used in art and industry. The temperature dependence of the crystal structures of two quinacridone polymorphs (β and γ), along with the common variant 2,9-dimethylquinacridone, were investigated using powder X-ray diffraction and terahertz spectroscopy. These were then compared with solid-state density functional theory simulations of both structures and vibrations. X-ray patterns were collected at eight temperatures in the range 13-298 K and terahertz spectra at fifteen temperatures in the range 20-300 K. Simulations were at absolute zero and at appropriate expansions to model room temperature. It was found that some of the powder X-ray diffraction features in only β-quinacridone (15.7°, 19.7° and 31.2° at 13 K) underwent anomalous shifting with temperature change. We attribute this to the unique coplanar hydrogen bonding pattern of β-quinacridone compared to the other solids, with the unusual diffraction peaks originating from crystallographic planes perpendicular to the a axis intermolecular hydrogen bonds. This observation coincides with a contraction of the a axis with heating and results from its relatively weak N-HO hydrogen bonds and significant C-HH-C repulsions. Associated with this anomalous contraction, for β-quinacridone only spectral peaks are seen to increase in energy with temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.