Abstract
Recently, dynamic social network research has attracted a great amount of attention, especially in the area of anomaly analysis that analyzes the anomalous change in the evolution of dynamic social networks. However, most of the current research focused on anomaly analysis of the macro representation of dynamic social networks and failed to analyze the nodes that have anomalous structural changes at a micro level. To identify and evaluate anomalous structural change-based nodes in generalized dynamic social networks that only have limited structural information, this research considers undirected and unweighted graphs and develops a multiple-neighbor superposition similarity method ( ), which mainly consists of a multiple-neighbor range algorithm ( ) and a superposition similarity fluctuation algorithm ( ). introduces observation nodes, characterizes the structural similarities of nodes within multiple-neighbor ranges, and proposes a new multiple-neighbor similarity index on the basis of extensional similarity indices. Subsequently, maximally reflects the structural change of each node, using a new superposition similarity fluctuation index from the perspective of diverse multiple-neighbor similarities. As a result, based on and , not only identifies anomalous structural change-based nodes by detecting the anomalous structural changes of nodes but also evaluates their anomalous degrees by quantifying these changes. Results obtained by comparing with state-of-the-art methods via extensive experiments show that can accurately identify anomalous structural change-based nodes and evaluate their anomalous degrees well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.