Abstract

In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world.

Highlights

  • Large-sized reservoirs are the main water sources for irrigation, reservoir cultivation, hydroelectric power, and drinking, in major inland populations

  • The second most serious factor is the environmental bearing with a value of 35%, the third most important is point source pollution with a value of 19%, and the least serious factor is soil erosion, at 5%

  • The results show that non-point pollution is the foremost factor of the upstream reservoir watershed influencing the water quality

Read more

Summary

Introduction

Large-sized reservoirs are the main water sources for irrigation, reservoir cultivation, hydroelectric power, and drinking, in major inland populations. The water quality and quantity of the reservoir is determined by many factors in the upstream watershed, such as the non-point source pollution, point source pollution, land use, population density, domestic wastewater discharges, herbicide concentrations, bacterial and viral contamination, and so on. Managing the upstream watershed is an essential way to control the water of the reservoir. While the upstream watershed is always complex, formed by hundreds of small watersheds, it is becoming popular to manage the whole watershed on a small watershed scale. Res. Public Health 2017, 14, 260; doi:10.3390/ijerph14030260 www.mdpi.com/journal/ijerph

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call