Abstract

Leaf growth and senescence are controlled by tight genetic factors involved regulation at multiple levels. Circular RNAs (circRNAs) have recently been reported as the microRNA sponge to accomplish corresponding regulatory roles. This study aims to explore the expression profile and functional role of circRNAs in Arabidopsis leaf growth and senescence. We used publically available RNA-seq data of Arabidopsis leaves to identify the circular RNA expression profile and used quantitative real-time PCR to validate our identified circRNAs. The functions of circRNAs were explored using distinct bioinformatics methods including analysis of network, gene ontology and KEGG pathway. We identified 168 circRNAs, including 40 novel circRNAs, in Arabidopsis thaliana leaves, with 158 (94.1%) circRNAs arising from the exons of genes. Real-time PCRs were used to verify 4 highly expressed circRNAs and they all showed consistent expression patterns with the RNA-seq results. Interestingly, 6 and 35 circRNAs were differentially expressed at G- to -M stage and M- to -S stage, respectively. The circRNAs display an upregulation trend during the lifespan of Arabidopsis leaves. Moreover, the expression of circRNAs during senescence is independent of host gene expression to a certain degree. The gene ontology (GO) and KEGG pathway analysis of the targeted mRNA of circRNA–miRNA–mRNA network showed that the circRNAs may be involved in plant hormone signal transduction, Porphyrin and chlorophyll metabolism during leaves senescence. Our comprehensive analysis of the expression profile of circRNAs and their potential functions during leaf growth and senescence suggest that circRNAs may function as new post-transcriptional regulators in the senescence of Arabidopsis leaves.

Highlights

  • The leaf is an important organ of plants

  • Our results demonstrate that circRNAs display an upregulation trend in the lifespan of Arabidopsis leaves, and may exercise important function as new post-transcriptional regulators during leaves development and senescence process

  • Our results first reveal that circRNAs showed the developmental-specific expression pattern in Arabidopsis leaves

Read more

Summary

Introduction

The leaf is an important organ of plants. As primary producers in the ecosystem, leaves fix carbon using light energy and produce food for other species (Woo et al, 2016). Leaves undergo a series of developmental, physiological and metabolic shift throughout their lifespans in an orderly manner (Kim et al, 2016). Circular RNAs during the Lifespan of Leaves chemical energy and nutrients. Leaf cells undergo dramatic changes in metabolism and cellular structures. Senescence is a very complicated genetic process and involves multiple layers of complex regulation

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.