Abstract
Patient social media sites have emerged as major platforms for discussion of treatments and drug side effects, making them a promising source for listening to patients' voices in adverse drug event reporting. However, extracting patient reports from social media continues to be a challenge in health informatics research. In light of the need for more robust extraction methods, the authors developed a novel information extraction framework for identifying adverse drug events from patient social media. They also conducted a case study on a major diabetes patient social media platform to evaluate their framework's performance. Their approach achieves an f-measure of 86 percent in recognizing discussion of medical events and treatments, an f-measure of 69 percent for identifying adverse drug events, and an f-measure of 84 percent in patient report extraction. Their proposed methods significantly outperformed prior work in extracting patient reports of adverse drug events in health social media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.