Abstract
<p>In this paper certain type of biometric measurements has been used to identify the cone beam computed tomography (CBCT) radiograph of the subject in a fast and reliable way. Where the CBCT radiograph of a person is used as a data and stored in database for later use in a person’s recognition process. The aim of this research is to use various stages of the preprocessing operations of the CBCT radiograph to obtain the clearest possible image that will help us in the identification process more easily and precisely. The contourlet transformation was used for feature extraction of each particular CBCT image and the results were processed by a new hybrid particle swarm optimization (PSO) named "contourlet PSO" algorithm (CPSO), which is faster and produce more precise (due to apply contourlet algorithm) than traditional PSO. The proposed algorithm (CPSO) gave a detection ratio of 98% after its application on 100 CBCT radiographs.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IAES International Journal of Artificial Intelligence (IJ-AI)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.