Abstract

The mineralization of organic components releases CO2 during composting, which not only leads to the loss of organic carbon, but has a direct negative impact on the environment. Malonic acid as a competitive inhibitor of succinate dehydrogenase could affect the tricarboxylic acid (TCA) cycle and reduce CO2 emissions. However, the bacterial interaction and organic component transformation has less known how to malonic acid reduce CO2 and improve of humus synthesis in complex composting. The aim of this study was to investigated the malonic acid on organic carbon sequestration and transforming cow manure waste into products with high humus content. Humus content was elevated by 16.8% and cumulative CO2 emissions (30 d)d reduced by 13.6% after malonic acid addition compared to the CK. SparCC analysis of bacterial interaction presented that the network complexity and stability was more higher with malonic acid addition, while a greater concentration of keystones and their ecological metabolic functions was observed, suggesting they weaken the influence of TCA cycle inhibition by enhancing interactions. PICRUSt predictions indicate that malonic acid might enhance humus content by promoting the synthesis of polyphenols and polymerization with amino acids. This study investigated the potential mechanism of regulators to enhance quality and reduce emissions during humification process, providing a new strategy for the resource utilization of organic solid waste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call