Abstract

When paths share a common congested link, they will all suffer from a performance degradation. Boolean tomography exploits these performance-level correlations between different paths to identify the congested links. It is clear that the congestion of a path will be distinctly intensive when it traverses multiple congested links. We adopt an enlarged state space model to mirror different congestion levels and employ a system of integer equations, instead of Boolean equations, to describe relationships between the path states and the link states. We recast the problem of identifying congested links into a constraint optimization problem, including Boolean tomography as a special case. For a logical tree, we propose an up-to-bottom algorithm and prove that it always achieves a solution to the problem. Compared with existing algorithms, the simulation results show that our proposed algorithm achieves a higher detection rate while keeping a low false positive rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.